Off–label uses of Memantine (Namenda)

OFF–LABEL USES OF MEMANTINE (NAMENDA is the brand name)

Memantine is a NMDA (N–methyl–D–aspartate) glutamate receptor antagonist which is, as one Portland psychiatrist summarized, “…good for any distressed neuron.”

For those who discuss the roles of kynurenine and brain–derived neurotrophic factor, and the various functions of astrocytes and glia in the brain all while eating breakfast, here are several clinical tidbits for you about memantine:

  1. First clinical tidbit is about major depression. Evidence is accumulating that glutamate plays a role in major depression. Patients with major depression – both during an acute depressive episode and during remission from a depressive episode – have elevated glutamate levels in at least some brain regions. The current hypothesis is that excessive glutamate action – especially extra–synaptic glutamate – is deleterious to neuronal function (i.e., excessive glutamate action in the brain is neurotoxic) and excessive glutamate action contributes to causing major depression (at least in some folks with major depression). It is especially noteworthy that N–methyl–D–aspartate (NMDA) glutamate receptor antagonist ketamine produces a profound antidepressant effect with almost immediate onset. So, too much glutamate activity in the brain is a bad thing.
  2. Second clinical tidbit: Experimental activation of the immune system with endotoxin (a cell–wall component of gram–negative bacteria) and chronic activation of the immune system during interferon–alpha treatment causes brain inflammation which then leads to microglial activation which can then interfere with excitatory amino acid metabolism leading to inappropriate glutamate receptor activation, which can lead to brain neurotoxicity. Microglia activated by excess inflammation in the brain, astroglial loss in the brain (which can occur in some folks with major depression), and inappropriate glutamate receptor activation in the brain can disrupt the body’s delicate balance of neuroprotective versus neurotoxic effects in the brain environment, tipping this delicate balance toward neurotoxicity. Astrocytes are responsible for taking up excess glutamate to protect neurons from neurotoxicity. This occurs through excitatory amino acid transporters. If astrocytes are decreased in number or inhibited (e.g., by microglia) from doing their job, then excessive glutamate accumulates extracellularly, leading to neurotoxicity (e.g., bad things such as multiple sclerosis). Among other things, memantine decreases endotoxin–induced activation of microglia, and thus decreases brain neurotoxicity. Again, too much glutamate activity in the brain is a bad thing, and memantine decreases glutamate activity in the brain.
  3. Third clinical tidbit. It has been hypothesized that glutamate dysregulation and excitotoxicity are crucial to the development of the cognitive disturbances that underline borderline personality disorder. As such, glutamate modulators such as memantine might become a treatment of borderline personality disorder. In a randomized controlled trial (RCT), Kulkarni examined the efficacy and tolerability of memantine compared with treatment as usual in patients with borderline personality disorder. According to intention-to-treat, latent growth curve analyses, a significant change in symptom severity was observed in the memantine group at memantine 20 mg/daily across time, compared with placebo (p = 0.02). No adverse effects were significantly more frequent among participants receiving active memantine than among those receiving placebo. Kulkarni’s conclusion: memantine at a 20-mg daily dose is a well tolerated drug that can improve borderline personality disorder symptomatology.

In more germane and generic terms: memantine blocks the N–methyl–D–aspartate (NMDA) glutamate receptors (located on neuron cell membranes in the brain and spinal cord) from being excessively stimulated/overwhelmed by excitatory glutamate neurotransmitter “bullies” which might be rioting in the neighborhoods of local neurons in various parts of the brain and spinal cord.

Here is some history on memantine: developed by Merz Pharmaceuticals in 1972, memantine has been marketed in Germany since 1983. Since then, memantine has been studied in a variety of neurological and psychiatric disorders. In 2000, Forest Pharmaceuticals became licensed by Merz for the manufacture of memantine in the United States. Memantine is approved by the FDA to allow the manufacturer to advertise that memantine is effective for the treatment of dementia associated with Alzheimer’s disease. Memantine has been prescribed by physicians “off–label” with varying degrees of success in such medical/psychiatric conditions as: attention–deficit/hyperactivity disorder; Tourette’s disorder; Huntington’s disease; obsessive compulsive disorder; Parkinson’s disease, Huntington’s disease; multiple sclerosis; lupus; epilepsy; migraine headaches; chronic neuropathic back pain; complex regional pain syndrome; bipolar disorder; recurring major depression; traumatic brain injury; “chemo brain;” alcohol craving; borderline personality disorder (as above); and in the treatment of post–stroke cognitive impairment.

Memantine  generic is available in 5 and 10 mg tablets. The time–release Namenda XR capsules are available in 7mg, 14mg, 21 mg and 28 mg capsules and is branded (i.e., more expensive). The generic tablets work well enough for my patients.

While there is published literature on the use of memantine in humans up to 20 mg daily; I have a small number of patients with migraines from Hell, chronic pain from multiple sclerosis, and/or back pain from hell who report that their best response to memantine has been at higher daily doses (i.e., 30-80 mg daily).

Memantine is usually well tolerated in the non–geriatric–aged population. As of 12/9/2021, I have prescribed memantine to at about 136 patients, and I have had prompt and profoundly positive treatment results in a sizable percentage of patients from 8 to 65 years of age, with memantine being most dramatically effective in my clinical population for the treatment of migraine headaches, chronic neuropathic pain, and Tourette’s disorder.

Memantine does not have any significant food interactions.  Memantine minimally inhibits P450 enzymes, so interactions with drugs metabolized by these enzymes are unlikely.

Memantine undergoes little metabolism and is predominately excreted unchanged in the urine. The elimination half–life of memantine is 60–80 hours. Protein binding is 45%.

There is no abuse/ chemical dependence potential with memantine.

There may be drug–drug interactions between memantine and the presence of any of the following: cigarettes/nicotine; amantadine, anticholinergics, barbiturates, cimetidine, dextromethorphan (i.e., Robitussin), hydrochlorothiazide (HCTZ), ketamine, L-dopa, neuroleptics (e.g., risperidone), ranitidine, and sodium bicarbonate.


DR. MORTIMER'S DOSING SCHEDULE FOR MEMANTINE (NAMENDA):

☞ Start with memantine 5 mg at bedtime nightly for at least 5  nights. Then…

☞ If no obvious benefit (or side effects), increase the dose to 5 mg twice daily (morning and bedtime) for at least the next 5 days. Then…

☞ If no obvious benefit (or side effects), then take 5 mg in the morning and 10 mg at bedtime for at least the next 5 days. Then…

☞ If no obvious benefit (or side effects), then take 10 mg twice daily.

Dr. Mortimer should then meet with his patient again within the first month of starting memantine (Namenda) so that Dr. Mortimer can carefully and thoroughly assess my patient’s response to treatment. (If there is partial improvement and no side–effects with the memantine (Namenda), they can then discuss whether to increase the memantine dose above the FDA–approved maximum daily dose of 20 mg daily.

For further reading:

  1. Abdul M, Hoosein N. N-methyl-D-aspartate receptor in human prostate cancer. J. Membrane Biol. 2005;205:125–128.
  2. Ahmed MM, Hoshino H, Chikuma T, Yamada M, Kato T. Effect of memantine on the levels of glial cells, neuropeptides, and peptide-degrading enzymes in rat brain regions of ibotenic acid-treated Alzheimer's disease model. Neuroscience. 2004;126:639–49.
  3. Aisen PS, Davis KL. Inflammatory mechanisms in Alzheimer's disease: implications for therapy. Am. J. Psychiatry. 1994;151:1105–1113.
  4. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O'Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T. Inflammation and Alzheimer's disease. Neurobiol. Aging. 2000;21:383–421.
  5. Almeida RC, Felisbino CS, Lopez MG, Rodrigues AL, Gabilan NH. Evidence for the involvement of l-arginine-nitric oxide-cyclic guanosine monophosphate pathway in the antidepressant-like effect of memantine in mice. Behav. Brain Res. 2006;168:318–322.
  6. Almeida RC, Souza DG, Soletti RC, Lopez MG, Rodrigues AL, Gabilan NH. Involvement of PKA, MAPK/ERK and CaMKII, but not PKC in the acute antidepressant-like effect of memantine in mice. Neurosci. Lett. 2006;395:93–7.
  7. Amadoro G, Ciotti MT, Costanzi M, Cestari V, Calissano P, Canu N. NMDA receptor mediates tau-induced neurotoxicity by calpain and ERK/MAPK activation. Proc. Natl. Acad. Sci. USA. 2006;103:2892–2897.
  8. Anderson ER, Gendelman HE, Xiong H. Memantine protects hippocampal neuronal function in murine human immunodeficiency virus type 1 encephalitis. J. Neurosci. 2004;24:7194–7198.
  9. Andine P, Sandberg M, Bagenholm R, Lehmann A, Hagberg H. Intra- and extracellular changes of amino acids in the cerebral cortex of the neonatal rat during hypoxic-ischemia. Dev. Brain Res. 1991;64:115–120.
  10. Andreassen OA, Waage J, Finsen B, Jorgensen HA. Memantine attenuates the increase in striatal preproenkephalin mRNA expression and development of haloperidol-induced persistent oral dyskinesias in rats. Brain Res. 2003;994:188–92.
  11. Aracava Y, Pereira EF, Maelicke A, Albuquerque EX. Memantine blocks alpha7* nicotinic acetylcholine receptors more potently than n-methyl-D-aspartate receptors in rat hippocampal neurons. J. Pharmacol. Exp. Ther. 2005;312:1195–205.
  12. Archer T, Palomo T, Fredriksson A. Restorative effects of glutamate antagonists in experimental parkinsonism. Amino Acids. 2002;23:71–85.
  13. Archer T, Fredriksson A. Restoration and putative protection in Parkinsonism. Neurotox. Res. 2000;2:251–292.
  14. Bachurin S, Tkachenko S, Baskin I, Lermontova N, Mukhina T, Petrova L, Ustinov A, Proshin A, Grigoriev V, Lukoyanov N, Palyulin V, Zefirov N. Neuroprotective and cognition-enhancing properties of MK-801 flexible analogs structure-activity relationships. Ann. N. Y. Acad. Sci. 2001;939:219–236.
  15. Banerjee PK, Paul I, Wanzo V, Adham N, Miguel-Hidalgo J. Soc Neurosci. Abst. 2004;30
  16. Beister A, Kraus P, Kuhn W, Dose M, Weindl A, Gerlach M. The N-methyl-D-aspartate antagonist memantine retards progression of Huntington's disease. J. Neural. Suppl. 2004;68:117–22.
  17. Belozertseva IV, Bespalov AY. Effects of NMDA receptor channel blockade on aggression in isolated male mice. Aggress. Behav. 1999;25:381–396.
  18. Belozertseva IV, Dravolina OA, Neznanova ON, Danysz W, Bespalov AY. Antinociceptive activity of combination of morphine and NMDA receptor antagonists depends on the inter-injection interval. Eur. J. Pharmacol. 2000;396:77–83.
  19. Benveniste H, Drejer J, Schusboe A, Diemer NH. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem. 1984;43:1369–1374.
  20. Berrino L, Oliva P, Massimo F, Aurilio C, Maione S, Grella A, Rossi F. Antinociceptive effect in mice of intraperitoneal N-methyl-D-aspartate receptor antagonists in the formalin test. Eur. J. Pain. 2003;7:131–7.
  21. Bertoglio LJ, Carobrez AP. Anxiolytic-like effects of NMDA/glycine-B receptor ligands are abolished during the elevated plus-maze trial 2 in rats. Psychopharmacology (Berl.) 2003;170:335–342.
  22. Bertoglio LJ, Carobrez AP. Scopolamine given pre-Trial 1 prevents the one-trial tolerance phenomenon in the elevated plus-maze Trial 2. Behav. Pharmacol. 2004;15:45–54.
  23. Bespalov AY, Dravolina OA, Zvartau EE, Beardsley PM, Balster RL. Effects of NMDA receptor antagonists on cocaine-conditioned motor activity in rats. Eur. J. Pharmacol. 2000;390:303–311.
  24. Bienkowski P, Krzascik P, Koros E, Kostowski W, Scinska A, Danysz W. Effects of a novel uncompetitive NMDA receptor antagonist, MRZ 2/579 on ethanol self-administration and ethanol withdrawal seizures. Eur. J. Pharmacol. 2001;413:81–89.
  25. Bisaga A, Comer SD, Ward AS, Popik P, Kleber HD, Fischman MW. The NMDA antagonist memantine attenuates the expression of opioid physical dependence in humans. Psychopharmacology (Berl.) 2001;157:1–10.
  26. Bisaga A, Evans SM. Acute effects of memantine in combination with alcohol in moderate drinkers. Psychopharmacology (Berl.) 2004;172:16–24.
  27. Bisaga A, Krzascik P, Palejko W, Jankowska E, Kostowski W, Danysz W. Effect of glutamate antagonists on NMDA- and AMPA-induced convulsant effects in mice and rats. Eur. J. Pharmacol. 1993;242:213–220.
  28. Black M, Lanthorn T, Small D, Mealing G, Lam V, Morley P. Study of potency, kinetics of block and toxicity of NMDA receptor antagonists using fura-2. Eur. J. Pharmacol. 1996;317:377–381.
  29. Blanpied TA, Boeckman FA, Aizenman E, Johnson JW. Trapping channel block of NMDA-activated responses by amantadine and memantine. J. Neurophysiol. 1997;77:309–323.
  30. Blokhina EA, Kashkin VA, Zvartau EE, Danysz W, Bespalov AY. Effects of nicotinic and NMDA receptor antagonists on intravenous cocaine and nicotine self-administration in mice. Eur. Neuropsychopharmacol. 2005;15:219–225.
  31. Blokhina EA, Sukhotina IA, Bespalov AY. Pretreatment with morphine potentiates naloxone-conditioned place aversion in mice effects of NMDA receptor antagonists. Eur. J. Pharmacol. 2000;406:227–32.
  32. Bolshakov KV, Gmiro VE, Tikhonov DB, Magazanik LG. Determinants of trapping block of N-methyl-d-aspartate receptor channels. J. Neurochem. 2003;87:56–65.
  33. Brackett RL, Pouw B, Blyden JF, Nour M, Matsumoto RR. Prevention of cocaine-induced convulsions and lethality in mice: effectiveness of targeting different sites on the NMDA receptor complex. Neuropharmacology. 2000;39:407–418.
  34. Bresink I, Benke TA, Collett VJ, Seal AJ, Parsons CG, Henley JM, Collingridge GL. Effects of memantine on recombinant rat NMDA receptors expressed in HEK 293 cells. Br. J. Pharmacol. 1996;119:195–204.
  35. Buchan AM. Do NMDA antagonists protect against cerebral ischemia: are clinical trials warranted ? Cerebrovasc. Brain Metab. Rev. 1990;2:1–26.
  36. Buisson A, Callebert J, Mathieu E, Plotkine M, Boulu RG. Striatal protection induced by lesioning the substantia-nigra of rats subjected to focal ischemia. J. Neurochem. 1992;59:1153–1157.
  37. Buisson B, Bertrand D. Open-channel blockers at the human alpha 4 beta 2 neuronal nicotinic acetylcholine receptor. Mol. Pharmacol. 1998;53:555–563.
  38. Burke JA, Zhang KM, Yang J, Lin T, Jackson B, Oyejide A, Wheeler L. Oral memantine increases rate of ERG recovery in rabbits following an acute retinal ischemic insult induced by elevated IOP. IOVS. 2005;46:4660.
  39. Burke SN, Maurer AP, Insel N, Navratilova Z, McNaughton BL, Wenk GL, Barnes CA. Soc.Neurosci. Abst. 2005;31
  40. Carter AJ. Antagonists of the NMDA receptor-channel complex and motor coordination. Life Sci. 1995;57:917–929.
  41. Castroman PJ, Ness TJ. Ketamine, an N-methyl-D-aspartate receptor antagonist, inhibits the spinal neuronal responses to distension of the rat urinary bladder. Anesthesiology. 2002;96:1410–9.
  42. Chatterton JE, Awobuluyi M, Premkumar LS, Takahashi H, Talantova M, Shin Y, Cui J, Tu S, Sevarino KA, Nakanishi N, Tong G, Lipton SA, Zhang D. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature. 2002;415:793–8.
  43. Chen HS, Lipton SA. Mechanism of memantine block of NMDA-activated channels in rat retinal ganglion cells uncompetitive antagonism. J. Physiol. (Lond) 1997;499(Pt 1):27–46.
  44. Chen HSV, Pellegrini JW, Aggarwal SK, Lei SZ, Warach S, Jensen FE, Lipton SA. Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine - therapeutic advantage against NMDA receptor-mediated neurotoxicity. J. Neurosci. 1992;12:4427–4436.
  45. Chen HSV, Wang YF, Rayudu PV, Edgecomb P, Neill JC, Segal MM, Lipton SA, Jensen FE. Neuroprotective concentrations of the N-methyl-D-aspartate open-channel blocker memantine are effective without cytoplasmic vacuolation following post-ischemic administration and do not block maze learning or long-term potentiation. Neuroscience. 1998;86:1121–1132.
  46. Chizh BA, Reismuller E, Schlutz H, Scheede M, Haase G, Englberger W. Supraspinal vs spinal sites of the antinociceptive action of the subtype-selective NMDA antagonist ifenprodil. Neuropharmacology. 2001;40:212–220.
  47. Chohan MO, Khatoon S, Iqbal IG, Iqbal K. Involvement of I(2)(PP2A) in the abnormal hyperphosphorylation of tau and its reversal by Memantine. FEBS Lett. 2006;580:3973–9.
  48. Clements JD, Lester RAJ, Tong G, Jahr CE, Westbrook GL. The time course of glutamate in the synaptic cleft. Science. 1992;258:1498–1501.
  49. Coan EJ, Irving AJ, Collingridge GL. Low-frequence activation of the NMDA receptor system can prevent the induction of LTP. Neurosci. Lett. 1989;105:205–210.
  50. Collins ED, Vosburg SK, Ward AS, Haney M, Foltin RW. Memantine increases cardiovascular but not behavioral effects of cocaine in methadone-maintained humans. Pharmacol. Biochem. Behav. 2006;83:47–55.
  51. Costall B, Naylor RJ, Tyers MB. The psychopharmacology of 5-HT3 receptors. Pharmacol. Ther. 1990;47:181–202.
  52. Culmsee C, Junker V, Kremers W, Thal S, Plesnila N, Krieglstein J. Combination therapy in ischemic stroke: synergistic neuroprotective effects of memantine and clenbuterol. Stroke. 2004;35:1197–202.
  53. DAmico M, DiFilippo C, Rossi F, Rossi F. Arrhythmias induced by myocardial ischemia-reperfusion are sensitive to ionotropic excitatory amino acid receptor antagonists. Eur. J. Pharmacol. 1999;366:167–174.
  54. Danysz W, Parsons CG. The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer's disease preclinical evidence. Intern. J. Geriat. Psychiatry. 2003;18:S23–S32.
  55. Danysz W, Parsons CG, Kornhuber J, Schmidt WJ, Quack G. Aminoadamantanes as NMDA receptor antagonists and antiparkinsonian agents - Preclinical studies. Neurosci. Biobehav. Rev. 1997;21:455–468.
  56. David HN, Ansseau M, Lemaire M, Abraini JH. Nitrous oxide and xenon prevent amphetamine-induced carrier-mediated dopamine release in a memantine-like fashion and protect against behavioral sensitization. Biol. Psychiatry. 2006;60:49–57.
  57. Davies SN, Martin D, Millar JD, Aram JA, Church J, Lodge D. Differences in results from in vivo and in vitro studies on the use-dependency of N-methyl-aspartate antagonism by MK-801 and other phencyclidine receptor ligands. Eur. J. Pharmacol. 1988;145:141–152.
  58. De Sarno P, Bijur GN, Zmijewska AA, Li X, Jope RS. In vivo regulation of GSK3 phosphorylation by cholinergic and NMDA receptors. Neurobiol. Aging. 2006;27:413–22.
  59. Dekundy A. Co-administration of Memantine with Acetylcholinesterase Inhibitors: Preclinical and Clinical Evidence. In: Gupta RC, editor. Toxicology of Organophosphate & Carbamate Compounds. San Diego: Elsevier; 2006. pp. 35–46.
  60. Degerman Gunnarsson, M Kilander, L Basun, H Lannfelt. Reduction of phosphorylated tau during memantine treatment of Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 2007;24:247–252.
  61. Dogan A, Eras MA, Rao VL, Dempsey RJ. Protective effects of memantine against ischemia-reperfusion injury in spontaneously hypertensive rats. Acta Neurochir. (Wien) 1999;141:1107–13.
  62. Dravolina OA, Belozertseva IV, Sukhotina IA, Bespalov AY. Morphine tolerance and dependence in mice with history of repeated exposures to NMDA receptor channel blockers. Pharmacol. Biochem. Behav. 1999;63:613–619.
  63. Duszczyk M, Gadamski R, Ziembowicz A, Danysz W, Lazarewicz JW. NMDA receptor antagonism does not inhibit induction of ischemic tolerance in gerbil brain in vivo. Neurotox. Res. 2005;7:283–92.
  64. Elgoyhen AB. Effects of memantine and neramexane on α4β2 and α7 nicotinic cholinergic receptors. 2005
  65. Plazas PV, Savino J, Kracun S, Gomez-Casati ME, Katz E, Parsons CG, Millar NS, Elgoyhen AB. Inhibition of the α9α10 nicotinic cholinergic receptor by neramexane, an open channel blocker of N-methyl-D-aspartate receptors. Eur. J. Pharmacol. 2007;566:11–19.
  66. Elgoyhen AB, Vetter DE, Katz E, Rothlin CV, Heinemann SF, Boulter J. alpha 10: A determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proc. Natl. Acad. Sci. USA. 2001;98:3501–3506.
  67. Enina G, Miglane E, Tilgale B. Results from intrevenous administration of Akatinol Mematine for patients with stroke. Latv. Med. J. 2002;3:25–29.
  68. Enz A, Gentsch C. Co-administration of memantine has no effect on the in vitro or ex vivo determined acetylcholinesterase inhibition of rivastigmine in the rat brain. Neuropharmacology. 2004;47:408–13.
  69. Escher T, Call SB, Blaha CD, Mittleman G. Behavioral effects of aminoadamantane class NMDA receptor antagonists on schedule-induced alcohol and self-administration of water in mice. Psychopharmacology (Berl.) 2006;187:424–34.
  70. Fan P. Effects of antidepressants on the inward current mediated by 5-HT3 receptors in rat nodose ganglion neurones. Br. J. Pharmacol. 1994;112:741–4.
  71. Fawcett J, Barkin RL. Review of the results from clinical studies on the efficacy, safety and tolerability of mirtazapine for the treatment of patients with major depression. J. Affect. Disord. 1998;51:267–85.
  72. FerrerMontiel AV, Merino JM, PlanellsCases R, Sun W, Montal M. Structural determinants of the blocker binding site in glutamate and NMDA receptor channels. Neuropharmacology. 1998;37:139–147.
  73. Fisher A, Starr MS. Opposite effects of glutamate antagonists and antiparkinsonian drugs on the activities of DOPA decarboxylase and 5-HTP decarboxylase in the rat brain. Brain Res. 2000;868:268–274.
  74. Floden AM, Li S, Combs CK. Beta-amyloid-stimulated microglia induce neuron death via synergistic stimulation of tumor necrosis factor alpha and NMDA receptors. J. Neurosci. 2005;25:2566–75.
  75. Frankiewicz T, Parsons CG. Memantine restores long term potentiation impaired by tonic N-methyl-D-aspartate (NMDA) receptor activation following reduction of Mg2+ in hippocampal slices. Neuropharmacology. 1999;38:1253–1259.
  76. Frankiewicz T, Parsons CG. Chronic memantine does not block 3-nitropropionic acid-induced delayed ischemic tolerance in rat hippocampal slices ex vivo. Neurotox. Res. 2004;5:617–622.
  77. Frankiewicz T, Pilc A, Parsons CG. Differential effects of NMDA-receptor antagonists on long-term potentiation and hypoxic/hypoglycaemic excitotoxicity in hippocampal slices. Neuropharmacology. 2000;39:631–642.
  78. Frankiewicz T, Potier B, Bashir ZI, Collingridge GL, Parsons CG. Effects of memantine and MK-801 on NMDA-induced currents in cultured neurones and on synaptic transmission and LTP in area CA1 of rat hippocampal slices. Br. J. Pharmacol. 1996;117:689–697.
  79. Fredriksson A, Archer T. Functional alteration by NMDA antagonist: Effects of L-Dopa, neuroleptics drug and postnatal administration. Amino Acids. 2002;23:111–32.
  80. Fredriksson A, Danysz W, Quack G, Archer T. Co-administration of memantine and amantadine with sub/suprathreshold doses of L-Dopa restores motor behaviour of MPTP-treated mice. J. Neural Transm. 2001;108:167–87.
  81. Fujii S, Ji ZX, Sumikawa K. Inactivation of alpha 7 ACh receptors and activation of non-alpha 7 ACh receptors both contribute to long term potentiation induction in the hippocampal CA1 region. Neurosci. Lett. 2000;286:134–138.
  82. Furukawa Y, Okada M, Akaike N, Hayashi T, Nabekura J. Reduction of voltage-dependent magnesium block of N-methyl-D-aspartate receptor-mediated current by in vivo axonal injury. Neuroscience. 2000;96:385–392.
  83. Gao Y, Chen HJ, Qian LH, Chen GY. [Long-term effects of memantine therapy on neonatal rats with hypoxic-ischemic brain damage. Zhongguo Dang Dai Er Ke Za Zhi. 2006;8:38–40.
  84. Garcia de Arriba S, Wegner F, Gruner K, Verdaguer E, Pallas M, Camins A, Wagner A, Wohlfahrt K, Allgaier C. Different capacities of various NMDA receptor antagonists to prevent ischemia-induced neurodegeneration in human cultured NT2 neurons. Neurochem. Int. 2006;49:466–74.
  85. Geldenhuys WJ, Terre'Blanche G, Van der Schyf CJ, Malan SF. Screening of novel pentacyclo-undecylamines for neuroprotective activity. Eur. J. Pharmacol. 2003;458:73–9.
  86. Geter-Douglass B, Witkin JM. Behavioral effects and anticonvulsant efficacies of low- affinity, uncompetitive NMDA antagonists in mice. Psychopharmacology. 1999;146:280–289.
  87. Gilling KE, Jatzke C, Parsons CG. Agonist concentration-dependency of blocking kinetics but not equilibrium block of N-methyl-D-aspartate receptors by memantine. Neuropharmacology. 2007;53:415–420.
  88. Globus MYT, Busto R, Martinez E, Valdes I, Dietrich WD, Ginsberg MD. Comparative effect of transient global ischemia on extracellular levels of glutamate, glycine and gamma-aminobutyric acid in vulnerable and nonvulnerable brain regions in the rat. J. Neurochem. 1991;57:470–478.
  89. Globus MYT, Ginsberg MD, Busto R. Excitotoxic index - a biochemical marker of selective vulnerability. Neurosci. Lett. 1991;127:39–42.
  90. Gorgulu A, Kins T, Cobanoglu S, Unal F, Izgi NI, Yanik B, Kucuk M. Reduction of edema and infarction by Memantine and MK-801 after focal cerebral ischemia and reperfusion in rat. Acta Neurochir. (Wien) 2000;142:1287–92.
  91. Greenshaw AJ, Silverstone PH. The non-antiemetic uses of serotonin 5-HT3 receptor antagonists.Clinical pharmacology and therapeutic applications. Drugs. 1997;53:20–39.
  92. Gu Z, Yamamoto T, Kawase C, Matsubara M, Kawase K, Sawada A, Kitazawa Y. Neuroprotective effect of N-methyl-D-aspartate receptor antagonists in an experimental glaucoma model in the rat. Nippon Ganka Gakkai Zasshi. 2000;104:11–16.
  93. Gupta RC, Dekundy A. Memantine does not influence ache inhibition in rat brain by donepezil or rivastigmine but does with dfp and metrifonate in in vivo studies. Drug Dev. Res. 2005;64:71–81.
  94. Gustin SM, Schwarz A, Birbaumer N, et al, “NMDA–receptor antagonist and morphine decrease CRPS–pain and cerebral pain representation,” Pain.2010;151(1):69-76
  95. Hagan RM, Kilpatrick GJ, Tyers MB. Interactions between 5-HT3 receptors and cerebral dopamine function: implications for the treatment of schizophrenia and psychoactive substance abuse. Psychopharmacology (Berl) 1993;112:S68–75.
  96. Hamelink C, Hampson A, Wink DA, Eiden LE, Eskay RL. Comparison of cannabidiol, antioxidants and diuretics in reversing binge ethanol-induced neurotoxicity. J. Pharmacol. Exp. Ther. 2005;314:780–788.
  97. Hare WA, WoldeMussie E, Lai RK, Ton H, Ruiz G, Chun T, Wheeler L. Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey, I: functional measures. Invest. Ophthalmol. Vis. Sci. 2004;45:2625–39.
  98. Hare WA, WoldeMussie E, Weinreb RN, Ton H, Ruiz G, Wijono M, Feldmann B, Zangwill L, Wheeler L. Efficacy and Safety of Memantine Treatment for Reduction of Changes Associated with Experimental Glaucoma in Monkey, II: Structural Measures. Invest. Ophthalmol. Vis. Sci. 2004;45:2640–51.
  99. Hare WE, Woldemussie E, Lai R, Ton H, Ruiz GFB. Efficacy and safety of memantine, an NMDA-type open-channel blocker, for reduction of retinal injury associated with experimental glaucoma in rat and monkey. Surv. Ophthalmol. 2001;45:S284–S289.
  100. 100.Harris AC, Gallus NJ, Under S, Gewirtz JC. Soc. Neurosci. Abst. 2004;30
  101. 101.Harvey BH, Bothma T, Nel A, Wegener G, Stein DJ. Involvement of the NMDA receptor, NO-cyclic GMP and nuclear factor K-beta in an animal model of repeated trauma. Hum. Psychopharmacol. 2005;20:367–373.
  102. 102.Herrero JF, Headley PM, Parsons CG. Memantine selectively depresses NMDA receptor-mediated responses of rat spinal neurones in vivo. Neurosci. Lett. 1994;165:37–40.
  103. 103.Hesselink MB, DeBoer AG, Breimer DD, Danysz W. Adaptations of NMDA and dopamine D-2, but not of muscarinic receptors following 14 days administration of uncompetitive NMDA receptor antagonists. J. Neural Transm. 1999;106:409–421.
  104. 104.Hesselink MB, DeBoer BG, Breimer DD, Danysz W. Brain penetration and in vivo recovery of NMDA receptor antagonists amantadine and memantine: A quantitative microdialysis study. Pharm. Res. 1999;16:637–642.
  105. 105. Holden CP, Haughey NJ, Nath A, Geiger JD. Role of Na+/H+ exchangers, excitatory amino acid receptors and voltage-operated Ca2+ channels in human immunodeficiency virus type 1 gp120-mediated increases in intracellular Ca2+ in human neurons and astrocytes. Neuroscience. 1999;91:1369–1378.
  106. 106.Holter SM, Danysz W, Spanagel R. Evidence for alcohol anti-craving properties of memantine. Eur. J. Pharmacol. 1996;314:R1–R2.
  107. 107.Hoogduijn MJ, Hitchcock IS, Smit NP, Gillbro JM, Schallreuter KU, Genever PG. Glutamate receptors on human melanocytes regulate the expression of MiTF. Pigment. Cell Res. 2006;19:58–67.
  108. 108.Huerta PT, Chang EH, Digiorgio LA, Volpe BT, Lee JY, Kowal C, Diamond B. Soc. Neurosci. Abst. 2006;32
  109. 109.Hyytia P, Backstrom P, Liljequist S. Site-specific NMDA receptor antagonists produce differential effects on cocaine self-administration in rats. Eur. J. Pharmacol. 1999;378:9–16.
  110. 110.Ikonomidou C, Stefovska V, Turski L. Neuronal death enhanced by N-methyl-D-aspartate antagonists. Proc. Natl. Acad. Sci. USA. 2000;97:12885–90.
  111. 111.Izumi Y, Clifford DB, Zorumski CF. Low concentrations of N-methyl-D-aspartate inhibit the induction of long-term potentiation in rat hippocampal slices. Neurosci. Lett. 1992;137:245–248.
  112. 112.Jaekel B, Muhlberg K, Garcia de Arriba S, Reichenbach A, Verdaguer E, Pallas M, Camins A, Norenberg W, Allgaier C. Neuroprotection associated with alternative splicing of NMDA receptors in rat cortical neurons. Br. J. Pharmacol. 2006;147:622–633. [PMC free article]
  113. 113.Jantas-Skotniczna D, Kajta M, Lason W. Memantine attenuates staurosporine-induced activation of caspase-3 and LDH release in mouse primary neuronal cultures. Brain Res. 2006;1069:145–53.
  114. 114.Jin K, Xie L, Mao XO, Greenberg DA. Alzheimer's disease drugs promote neurogenesis. Brain Res. 2006;1085:183–188.
  115. 115.Johnson JW, Kotermanski SE. Mechanism of action of memantine. Curr. Opin. Pharmacol. 2006;6:61–7.
  116. 116.Jones MW, McClean M, Parsons CG, Headley PM. The in vivo significance of the varied channel blocking properties of uncompetitive NMDA receptor antagonists. Neuropharmacology. 2001;41:50–61.
  117. 117.Karanian DA, Baude AS, Brown QB, Parsons CG, Bahr BA. 3-Nitropropionic acid toxicity in hippocampus: Protection through N-methyl-D-aspartate receptor antagonism. Hippocampus. 2006;16:834–842.
  118. 118.Kashiwagi K, Masuko T, Nguyen CD, Kuno T, Tanaka I, Igarashi K, Williams K. Channel blockers acting at N-methyl-D-aspartate receptors: differential effects of mutations in the vestibule and ion channel pore. Mol. Pharmacol. 2002;61:533–45.
  119. 119.Kashiwagi K, Pahk AJ, Masuko T, Igarashi K, Williams K. Block and modulation of N-methyl-D-aspartate receptors by polyamines and protons: Role of amino acid residues in the transmembrane and pore-forming regions of NR1 and NR2 subunits. Mol. Pharmacol. 1997;52:701–713.
  120. 120.Katagiri H, Tanaka K, Manabe T. Requirement of appropriate glutamate concentrations in the synaptic cleft for hippocampal LTP induction. Eur. J. Neurosci. 2001;14:547–53.
  121. 121.Katz E, Elgoyhen AB, Gomez-Casati ME, Knipper M, Vetter DE, Fuchs PA, Glowatzki E. Developmental regulation of nicotinic synapses on cochlear inner hair cells. J. Neurosci. 2004;24:7814–20.
  122. 122.Keilhoff G, Wolf G. Memantine prevents quinolinic acid-induced hippocampal damage. Eur. J. Pharmacol. 1992;219:451–454.
  123. 123.Kim TW, Kim DM, Park KH, Kim H. Neuroprotective effect of memantine in a rabbit model of optic nerve ischemia. Korean J. Ophthalmol. 2002;16:1–7.
  124. 124.Kimura M, Komatsu H, Ogura H, Sawada K. Comparison of donepezil and memantine for protective effect against amyloid-beta(1-42) toxicity in rat septal neurons. Neurosci. Lett. 2005;391:17–21.
  125. 125.King BH, Wright DM, Handen BL, Sikich L, Zimmerman AW, McMahon W, Cantwell E, Davanzo PA, Dourish CT, Dykens EM, Hooper SR, Jaselskis CA, Leventhal BL, Levitt J, Lord C, Lubetsky MJ, Myers SM, Ozonoff S, Shah BG, Snape M, Shernoff, EW, Williamson K, Cook EH Jr. “Double-blind, placebo-controlled study of amantadine hydrochloride in the treatment of children with autistic disorder.” J Am Acad Child Adolesc Psychiatry. 2001 Jun;40(6):658-65.
  126. 126.Klein WL, Lacor PN, De Felice FG, Ferreira ST. Anonymous,Memories Molecules and Circuits. 2007. Molecules that disrupt memory circuits in Alzheimer's disease the attack on synapses by A? oligomers (ADDLs)
  127. 127.Kornhuber J, Weller M, Schoppmeyer K, Riederer P. Amantadine and memantine are NMDA receptor antagonists with neuroprotective properties. J. Neural Transm., Suppl. 1994;43:91–104.
  128. 128.Koros E, Kostowski W, Danysz W, Bienkowski P. Ethanol discrimination in the rat: lack of modulation by restraint stress and memantine. Naunyn Schmied. Arch. Pharmacol. 1999;359:117–122.
  129. 129.Kos T, Popik P. A comparison of the predictive therapeutic and undesired side-effects of the NMDA receptor antagonist, memantine, in mice Behav. Pharmacol. 2005;16:155–61.
  130. 130.Kos T, Popik P, Pietraszek M, Schäfer D, Danysz W, Dravolina O, Blokhina E, Galankin T, Bespalov AY. Effect of 5-HT3 receptor antagonist MDL 72222 on behaviors induced by ketamine in rats and mice. Eur. Neuropsychopharmacol. 2006;16:297–310.
  131. 131.Kostowski W. 5-HT3 receptors and central effects of ethanol. Pol. J. Pharmacol. 1996;48:243–54.
  132. 132.Kotermanski SE, Johnson JW. Soc. Neurosci. Abst. 2005;31
  133. 133.Kotlinska J. NMDA antagonists inhibit the development of ethanol dependence in rats. Pol. J. Pharmacol. 2001;53:47–50.
  134. 134.Kotlinska J, Biala G. Memantine and ACPC affect conditioned place preference induced by cocaine in rats. Pol. J. Pharmacol. 2000;52:179–85.
  135. 135.Kowal C, DeGiorgio LA, Nakaoka T, Hetherington H, Huerta PT, Diamond B, Volpe BT. Cognition and immunity antibody impairs memory. Immunity. 2004;21:179–88. [PubMed]
  136. 136.Kowluru RA, Engerman RL, Case GL, Kern TS. Retinal glutamate in diabetes and effect of antioxidants. Neurochem. Int. 2001;38:385–390. [PubMed]
  137. 137.Kozela E, Danysz W, Popik P. Uncompetitive NMDA receptor antagonists potentiate morphine antinociception recorded from the tail but not from the hind paw in rats. Eur. J. Pharmacol. 2001;423:17–26. [PubMed]
  138. 138.Kozela E, Pilc A, Popik P. Inhibitory effects of MPEP, an mGluR5 antagonist, and memantine, an N- methyl- D-aspartate receptor antagonist, on morphine antinociceptive tolerance in mice. Psychopharmacology (Berl) 2003;165:245–51. [PubMed]
  139. 139.Kozela E, Popik P. The effects of NMDA receptor antagonists on acute morphine antinociception in mice. Amino Acids. 2002;23:163–168. [PubMed]
  140. 140.Kulkarni J, Thomas N, Hudaib AR, et al, “Effect of the Glutamate NMDA Receptor Antagonist Memantine as Adjunctive Treatment in Borderline Personality Disorder: An Exploratory, Randomised, Double-Blind, Placebo-Controlled Trial.” CNS Drugs. 2018;32(2):179–187
  141. 141.Krupitsky E, Masalov D, Burakov A, Didenko T, Romanova T, Bespalov AY, Neznanova ON, Grinenko NI, Grinenko AY, Slavina TY, Tcheremissine OV, Zvartau EE. A pilot study of memantine effects on protracted withdrawal (syndrome of anhedonia) in heroin addicts. Addict. Disord. Their. Treat. 2002;1:143–146.
  142. 142.Krupitsky EM, Neznanova ON, Masalov DV, Burakov AM, Didenko TY, Romanova TN, Tsoy MV, Bespalov AY, Slavina TY, Grinenko AY, Zvartau EE, Krystal JH. The NMDA receptor antagonist, memantine, reduces alcohol cue-induced craving even though it has mild ethanol-like effects in alcohol dependent patients. Alcoholism. 2005;29:161A.
  143. 143.Krusz JC, “Memantine for Migraine and Tension-Type Headache Prophylaxis. Practical Pain Management. 2011; Volume 11; Issue 1
  144. 144.Kucheryanu VG, Kryzhanovskii GN. Effect of glutamate and antagonists of N-methyl-D-aspartate receptors on experimental parkinsonian syndrome in rats. Bull. Exp. Biol. Med. 2000;130:629–32. [PubMed]
  145. 145.Kulkarni J, Thomas N, Hudaib AR, et al, “Effect of the Glutamate NMDA Receptor Antagonist Memantine as Adjunctive Treatment in Borderline Personality Disorder: An Exploratory, Randomised, Double-Blind, Placebo-Controlled Trial.” CNS Drugs. 2018;32(2):179–187]
  146. 146. Laabich A, Cooper NG. Regulation of calcium/calmodulin-dependent protein kinase II in the adult rat retina is mediated by ionotropic glutamate receptors. Exp. Eye Res. 1999;68:703–713. [PubMed]
  147. 147.Lacor P-N, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, Viola KL, Klein WL. Aβ oligomers-induced aberrations in synapse composition, shape and density provide a molecular basis for loss of connectivity in Alzheimer´s disease. J. Neurosci. 2007;27:796–807. [PubMed]
  148. 148.Lahiri DK, Alley GM, Morgan C, Banerjee PK, Farlow MR. Effect of memantine on levels of the amyloid beta peptide in cell cultures II. J. Neurochem. 2003;85:42.
  149. 149.Lang UE, Muhlbacher M, Hesselink MB, Zajaczkowski W, Danysz W, Danker-Hopfe H, Hellweg R. No nerve growth factor response to treatment with memantine in adult rats. J. Neural Transm. 2004;111:181–90. [PubMed]
  150. 150.Lapchak PA. Memantine, an uncompetitive low affinity NMDA open-channel antagonist improves clinical rating scores in a multiple infarct embolic stroke model in rabbits. Brain Res. 2006;1088:141–147. [PubMed]
  151. 151.Lee ST, Chu K, Jung KH, Kim J, Kim EH, Kim SJ, Sinn DI, Ko SY, Kim M, Roh JK. Memantine reduces hematoma expansion in experimental intracerebral hemorrhage, resulting in functional improvement. J. Cereb. Blood Flow Metab. 2006;26:536–544. [PubMed]
  152. 152.Lehmann A, Karrberg L. Effects of n-methyl-d-aspartate receptor antagonists on cisplatin-induced emesis in the ferret. Neuropharmacology. 1996;35:475–481. [PubMed]
  153. 153.Lermontova NN, Mukhina TV, Van'kin GI, Serkova TP, Bachurin SO. Comparison of the effect of NT-0409 and antidementia drugs on learning and memory in rats with chronic cerebral cholinergic deficiency. Bull. Exp. Biol. Med. 2003;135:48–51. [PubMed]
  154. 154.Levin ED, Christopher NC, Briggs SJ. Chronic nicotinic agonist and antagonist effects on T-maze alternation. Physiol. Behav. 1997;61:863–866. [PubMed]
  155. 155.Levin ED, Lippiello P. Mutually potentiating effects of mecamylamine and haloperidol in producing catalepsy in rats. Drug. Dev. Res. 1999;47:90–96.
  156. 156.Li L, Sengupta A, Haque N, Grundke-Iqbal I, Iqbal K. Memantine inhibits and reverses the Alzheimer type abnormal phosphorylation of tau and associated neurodegeneration. FEBS Lett. 2004;566:261–269. [PubMed]
  157. 157.Li Y, White FJ, Wolf ME. Pharmacological reversal of behavioral and cellular indices of cocaine sensitization in the rat. Psychopharmacology. 2000;151:175–183. [PubMed]
  158. 158.Lipton SA. Paradigm shift in neuroprotection by NMDA receptor blockade: Memantine and beyond. Nat. Rev. Drug Discov. 2006:1–11. [PubMed]
  159. 159.Lluch J, Rodriguez-Arias M, Aguilar MA, Minarro J. Role of dopamine and glutamate receptors in cocaine-induced social effects in isolated and grouped male OF1 mice. Pharmacol. Biochem. Behav. 2005;82:478–487. [PubMed]
  160. 160.Losi G, Lanza M, Makovec F, Artusi R, Caselli G, Puia G. Functional in vitro characterization of CR 3394: A novel voltage dependent N-methyl-d-aspartate (NMDA) receptor antagonist. Neuropharmacology. 2006;50:277–285. [PubMed]
  161. 161. Lovinger DR. 5-HT3 receptors and the neural actions of alcohols: an increasingly exciting topic. Neurochem. Int. 1999;35:125–130. [PubMed]
  162. 162.Lukomskaia NI, Lavrent'eva VV, Starshinova LA, Zhabko EP, Gorbunova LV, Tikhonova TB, Gmiro VE, Magazanik LG. Effects of blockade of ionotropic glutamate receptors on the development of pentylenetetrazole kindling in mice. Rossiiskii Fiziologicheskii Zhurnal Imeni I.M.Sechenova. 2005;91:1241–1251. [PubMed]
  163. 163.Lukomskaia NI, Rukoiatkina NI, Gorbunova LV, Gmiro VE, Bol'shakov KV, Magazanik LG. Comparison of the anticonvulsant activity of organic mono- and di-cations and their potential to inhibit NMDA and AMPA glutamate receptors Original Title: Sopostavlenie protivosudorozhnoi aktivnosti organicheskikh mono- i dikationov s ikh sposobnost'iu ingibirovat' NMDA i AMPA glutamatnye retseptory. Rossiiskii Fiziologicheskii Zhurnal Imeni I.M.Sechenova. 2002;88:1161–1171.
  164. 164.Lukoyanov NV, Paula-Barbosa MM. Memantine, but not dizocilpine, ameliorates cognitive deficits in adult rats withdrawn from chronic ingestion of alcohol. Neurosci. Lett. 2001;309:45–48. [PubMed]
  165. 165.Maldonado C, Cauli O, Rodriguez-Arias M, Aguilar MA, Minarro J. Memantine presents different effects from MK-801 in motivational and physical signs of morphine withdrawal. Behav. Brain Res. 2003;144:25–35. [PubMed]
  166. 166.Maler JM, Esselmann H, Wiltfang J, Kunz N, Lewczuk P, Reulbach U, Bleich S, Ruther E, Kornhuber J. Memantine inhibits ethanol-induced NMDA receptor up-regulation in rat hippocampal neurons. Brain Res. 2005;1052:156–162. [PubMed]
  167. 167.Malyshkin A, Medvedev I, Danysz W, Bespalov AY. Anti-allodynic interactions between NMDA receptor channel blockers and morphine or clonidine in neuropathic rats. Eur. J. Pharmacol. 2005;519:80–5. [PubMed]
  168. 168.Mansbach RS, Chambers LK, Rovetti CC. Effects of the competitive nicotinic antagonist erysodine on behavior occasioned or maintained by nicotine: comparison with mecamylamine. Psychopharmacology. 2000;148:234–242. [PubMed]
  169. 169.Marubio LM, Changeux JP. Nicotinic acetylcholine receptor knockout mice as animal models for studying receptor function. Eur. J. Pharmacol. 2000;393:113–121. [PubMed]
  170. 170.Marvanova M, Lakso M, Pirhonen J, Nawa H, Wong G, Castren E. The Neuroprotective Agent Memantine Induces Brain-Derived Neurotrophic Factor and trkB Receptor Expression in Rat Brain. Mol. Cell. Neurosci. 2001;18:247–258. [PubMed]
  171. 171.Maskell PD, Speder P, Newberry NR, Bermudez I. Inhibition of human alpha 7 nicotinic acetylcholine receptors by open channel blockers of N-methyl-D-aspartate receptors. Br. J. Pharmacol. 2003;140:1313–9. [PMC free article] [PubMed]
  172. 172.McBride WJ, Li TK. Animal models of alcoholism: neurobiology of high alcohol-drinking behavior in rodents. Crit. Rev. Neurobiol. 1998;12:339–69. [PubMed]
  173. 173.McClean M, Chizh BA, Jones MW, Parsons CG, Headley PM. Soc.Neurosci. Abst. 1996;22
  174. 174.McRoberts JA, Coutinho SV, Marvizon JC, Grady EF, Tognetto M, Sengupta JN, Ennes HS, Chaban VV, Amadesi S, Creminon C, Lanthorn T, Geppetti P, Bunnett NW, Mayer EA. Role of peripheral N-Methyl-D-Aspartate (NMDA) receptors in visceral nociception in rats. Gastroenterology. 2001;120:1737–1748. [PubMed]
  175. 175.Mealing GA, Lanthorn TH, Murray CL, Small DL, Morley P. Differences in degree of trapping of low-affinity uncompetitive N-methyl-D-aspartic acid receptor antagonists with similar kinetics of block. J. Pharmacol. Exp. Ther. 1999;288:204–210. [PubMed]
  176. 176.Medvedev IO, Malyshkin AA, Belozertseva IV, Sukhotina IA, Sevostianova NY, Aliev K, Zvartau EE, Parsons CG, Danysz W, Bespalov AY. Effects of low-affinity NMDA receptor channel blockers in two rat models of chronic pain. Neuropharmacology. 2004;47:175–83. [PubMed]
  177. 177.Meldrum B. Protection against ischemic brain damage by excitatory amino acid antagonists. In: Bazan NG, Braquet P, Ginsberg MD, editors. Neurochemical correlates of cerebrai ischemia.Vol. 7, Advances in Neurochemistry. Vol. 7. New York: Plenum Press; 1992. pp. 245–263.
  178. 178.Miguel-Hidalgo JJ, Alvarez XA, Cacabelos R, Quack G. Neuroprotection by memantine against neurodegeneration induced by beta- amyloid(1-40) Brain Res. 2002;958:210–221.
  179. 179.Miguel-Hidalgo JJ, Paul IA, Wanzo V, Banerjee PK. Memantine inhibits the expression of caspase-8 and improves learning in rats injected with [beta]-amyloid 140. FASEB J. 2006;20:A1135.
  180. 180. Minkeviciene R, Banerjee P, Tanila H. Memantine improves spatial learning in a transgenic mouse model of Alzheimer's disease. J. Pharmacol. Exp. Ther. 2004;311:677–82. [PubMed]
  181. 181.Mirza NR, Bright JL, Stanhope KJ, Wyatt A, Harrington NR. Lamotrigine has an anxiolytic-like profile in the rat conditioned emotional response test of anxiety: a potential role for sodium channels? Psychopharmacology (Berl) 2005;180:159–168. [PubMed]
  182. 182.Misztal M, Frankiewicz T, Parsons CG, Danysz W. Learning deficits induced by chronic intraventricular infusion of quinolinic acid - protection by MK-801 and memantine. Eur. J. Pharmacol. 1996;296:1–8. [PubMed]
  183. 183.Mitani A, Andou Y, Kataoka K. Selective vulnerability of hippocampal CA1 neurons cannot be explained in terms of an increase in glutamate concentration during ischemia in the gerbil: Brain microdialysis study. Neuroscience. 1992;48:307–313. [PubMed]
  184. 184.Moutsimilli L, Farley S, Dumas S, El Mestikawy S, Giros B, Tzavara ET. Selective cortical VGLUT1 increase as a marker for antidepressant activity. Neuropharmacology. 2005;49:890–900. [PubMed]
  185. 185.Muller WE, Laplanche J, Ushijima H, Schroder HC. Novel approaches in diagnosis and therapy of creutzfeldt-jakob disease. Mech. Ageing Dev. 2000;116:193–218. [PubMed]
  186. 186.Nakamura S, Murayama N, Noshita T, Ogino R, Ohno T. Cognitive dysfunction induced by sequential injection of amyloid beta and ibotenate into the bilateral hippocampus protection by memantine and MK-801. J. Pharmacol. Sci. 2006;100:142P. [PubMed]
  187. 187.Nakazato E, Kato A, Watanabe S. Brain but not spinal NR2B receptor is responsible for the anti-allodynic effect of an NR2B subunit-selective antagonist CP-101,606 in a rat chronic constriction injury model. Pharmacology. 2005;73:8–14. [PubMed]
  188. 188.Naskar R, Quinto K, Romann I, Schuettauf F, Zurakowski D. Phenytoin blocks retinal ganglion cell death after partial optic nerve crush. Exp. Eye Res. 2002;74:747–72. [PubMed]
  189. 189.Nath A, Haughey NJ, Jones M, Anderson C, Bell JE, Geiger JD. Synergistic neurotoxicity by human immunodeficiency virus proteins Tat and gp120: Protection by memantine. Ann. Neurol. 2000;47:186–194. [PubMed]
  190. 190.Neugebauer V, Kornhuber J, Lucke T, Schaible HG. The clinically available NMDA receptor antagonist memantine is antinociceptive on rat spinal neurones. Neuroreport. 1993;4:1259–1262. [PubMed]
  191. 191.Newman JL, Beardsley PM. Effects of memantine, haloperidol, and cocaine on primary and conditioned reinforcement associated with cocaine in rhesus monkeys. Psychopharmacology (Berl) 2006;185:142–149. [PubMed]
  192. 192.Neznanova ON, Blokhina EA, Sukhotina IA, Bespalov AY. Motor impairment produced by ethanol and site-selective NMDA receptor antagonists in mice: tolerance and cross-tolerance. Alcohol. 2000;20:31–36. [PubMed]
  193. 193.Nicholson KL, Jones HE, Balster RL. Evaluation of the reinforcing and discriminative stimulus properties of the low-affinity N-methyl-D-aspartate channel blocker memantine. Behav. Pharmacol. 1998;9:231–243. [PubMed]
  194. 194.Nisijima K, Shioda K, Yoshino T, Takano K, Kato S. Memantine, an NMDA antagonist, prevents the development of hyperthermia in an animal model for serotonin syndrome. Pharmacopsychiatry. 2004;37:57–62. [PubMed]
  195. 195.Nowak L, Bregestovski P, Ascher P, Herbert A, Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurons. Nature. 1984;307:462–465. [PubMed]
  196. 196.Olivar T, Laird JM. Differential effects of N-methyl-D-aspartate receptor blockade on nociceptive somatic and visceral reflexes. Pain. 1999;79:67–73. [PubMed]
  197. 197.Oliver D, Ludwig J, Reisinger E, Zoellner W, Ruppersberg JP, Fakler B. Memantine inhibits efferent cholinergic transmission in the cochlea by blocking nicotinic acetylcholine receptors of outer hair cells. Mol. Pharmacol. 2001;60:183–9. [PubMed]
  198. 198.Osborne NN. Memantine reduces alterations to the mammalian retina, in situ, induced by ischemia. Visual Neurosci. 1999;16:45–52. [PubMed]
  199. 199.Owyang C, Zhou SY, Wang L. Chronic activation of NMDA receptors is responsible for selective nitrergic neuropathy in diabetic rats. Gastroenterology. 2005;128:A550.
  200. 200.Ozsuer H, Gorgulu A, Kiris T, Cobanoglu S. The effects of memantine on lipid peroxidation following closed-head trauma in rats. Neurosurg. Rev. 2005;28:143–147. [PubMed]
  201. 201.Parada-Turska J, Rzeski W, Majdan M, Kandefer-Szerszen M, Turski WA. Effect of glutamate receptor antagonists and antirheumatic drugs on proliferation of synoviocytes in vitro. Eur. J. Pharmacol. 2006;535:95–7. [PubMed]
  202. 202.Parsons CG, Danysz W, Quack G. Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist - a review of preclinical data. Neuropharmacology. 1999;38:735–767. [PubMed]
  203. 203.Parsons CG, Gilling K. Patch Clamp Methiods and Protocols. Humana: 2006. Memantine as an example of a fast, voltage-dependent, open channel N-methyl-D-aspartate (NMDA) receptor blocker; pp. 15–36. [PubMed]
  204. 204.Parsons CG, Gruner R, Rozental J, Millar J, Lodge D. Patch clamp studies on the kinetics and selectivity of N-methyl-D-aspartate receptor antagonism by memantine (1-amino-3,5-dimethyladamantan) Neuropharmacology. 1993;32:1337–1350. [PubMed]
  205. 205.Parsons CG, Hartmann S, Spielmanns P. Budipine is a low affinity, N-methyl-D-aspartate receptor antagonist: patch clamp studies in cultured striatal, hippocampal, cortical and superior colliculus neurones. Neuropharmacology. 1998;37:719–727. [PubMed]
  206. 206.Parsons CG, Panchenko VA, Pinchenko VO, Tsyndrenko AY, Krishtal OA. Comparative patch-clamp studies with freshly dissociated rat hippocampal and striatal neurons on the NMDA receptor antagonistic effects of amantadine and memantine. Eur. J. Neurosci. 1996;8:446–454. [PubMed]
  207. 207.Parsons CG, Quack G, Bresink I, Baran L, Przegalinski E, Kostowski W, Krzascik P, Hartmann S, Danysz W. Comparison of the potency, kinetics and voltage-dependency of a series of uncompetitive NMDA receptor antagonists in vitro with anticonvulsive and motor impairment activity in vivo. Neuropharmacology. 1995;34:1239–1258. [PubMed]
  208. 208.Parsons CG, Spielmanns P, Ruppersberg JP, Plinkert P. Soc. Neurosci. Abst. 1999;25
  209. 209.Parsons CG, Stöffler A, Danysz W. Memantine a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system too little activation is bad, too much is even worse. Neuropharmacology . 2007 [Epub ahead of print] [PubMed]
  210. 210.Paul C, Bolton C. Modulation of blood-brain barrier dysfunction and neurological deficits during acute experimental allergic encephalomyelitis by the N-methyl-D- aspartate receptor antagonist memantine. J. Pharmacol. Exp. Ther. 2002;302:50–57. [PubMed]
  211. 211.Pauly JR, Marks MJ, Robinson SF, van de Kamp JL, Collins AC. Chronic nicotine and mecamylamine treatment increase brain nicotinic receptor binding without changing alpha 4 or beta 2 mRNA levels. J. Pharmacol. Exp. Ther. 1996;278:361–9. [PubMed]
  212. 212.Peng X, Gerzanich V, Anand R, Whiting PJ, Lindstrom J. Nicotine-induced increase in neuronal nicotinic receptors results from a decrease in the rate of receptor turnover. Mol. Pharmacol. 1994;46:523–30. [PubMed]
  213. 213.Periclou AP, Ventura D, Sherman T, Rao N, Abramowitz WT. Lack of pharmacokinetic or pharmacodynamic interaction between memantine and donepezil. Ann. Pharmacother. 2004;38:1389–94. [PubMed]
  214. 214.Picciotto MR, Caldarone BJ, King SL, Zachariou V. Nicotinic receptors in the brain: Links between molecular biology and behavior. Neuropsychopharmacology. 2000;22:451–465. [PubMed]
  215. 215.Picciotto MR, Zoli M, Zachariou V, Changeux JP. Contribution of nicotinic acetylcholine receptors containing the beta 2- subunit to the behavioural effects of nicotine. Biochem. Soc. Trans. 1997;25:824–9. [PubMed]
  216. 216.Plaznik A, Kostowski W, Stefanski R. Limbic mechanisms of anxiolytics acting on 5-HT receptors. Pol. J. Pharmacol. 1994;46:473–7. [PubMed]
  217. 217.Popik P, Danysz W. Inhibition of reinforcing effects of morphine and motivational aspects of naloxone-precipitated opioid withdrawal by N-methyl-D-aspartate receptor antagonist, memantine. J. Pharmacol. Exp. Ther. 1997;280:854–865. [PubMed]
  218. 218.Popik P, Kozela E. Clinically available NMDA antagonist, memantine, attenuates tolerance to analgesic effects of morphine in a mouse tail flick test. Pol. J. Pharmacol. 1999;51:223–31. [PubMed]
  219. 219.Popik P, Kozela E, Danysz W. Clinically available NMDA receptor antagonists memantine and dextromethorphan reverse existing tolerance to the antinociceptive effects of morphine in mice. Naunyn Schmied. Arch. Pharmacol. 2000;361:425–432. [PubMed]
  220. 220.Popik P, Kozela E, Pilc A. Selective agonist of group II glutamate metabotropic receptors, LY354740, inhibits tolerance to analgesic effects of morphine in mice. Br. J. Pharmacol. 2000;130:1425–1431. [PMC free article] [PubMed]
  221. 221.Popik P, Kozela E, Wrobel M, Wozniak KM, Slusher BS. Morphine tolerance and reward but not expression of morphine dependence are inhibited by the selective glutamate carboxypeptidase II (GCP II, NAALADase) inhibitor, 2-PMPA. Neuropsychopharmacology. 2003;28:457–67. [PubMed]
  222. 222.Popik P, Wrobel M, Bisaga A. Reinstatement of Morphine-Conditioned Reward is Blocked by Memantine. Neuropsychopharmacology. 2006;31:160–70. [PubMed]
  223. 223.Popik P, Wrobel M, Rygula R, Bisaga A, Bespalov AY. Effects of memantine, an NMDA receptor antagonist, on place preference conditioned with drug and nondrug reinforcers in mice. Behav. Pharmacol. 2003;14:237–44. [PubMed]
  224. 224.Rammes G, Eisensamer B, Ferrari U, Shapa M, Gimpl G, Gilling K, Parsons C, Riering K, Hapfelmeier G, Bondy B, Zieglgansberger W, Holsboer F, Rupprecht R. Antipsychotic drugs antagonize human serotonin type 3 receptor currents in a noncompetitive manner. Mol. Psychiatry. 2004;9:846–858. [PubMed]
  225. 225.Rammes G, Mahal B, Putzke J, Parsons CG, Spielmanns P, Pestel E, Spanagel R, Zieglgansberger W, Schadrack J. The anti-craving compound acamprosate acts as a weak NMDA-receptor antagonist, but modulates NMDA-receptor subunit expression similar to memantine and MK-801. Neuropharmacology. 2001;40:749–60. [PubMed]
  226. 226.Rammes G, Rupprecht R, Ferrari U, Zieglgänsberger W, Parsons CG. The NMDA receptor channel blockers memantine, MRZ 2/579 and other amino-alkyl-cyclohexanes also antagonise 5-HT3 receptor currents in HEK-293 and N1E-115 cells in a non-competitive manner. Neurosci. Lett. 2001;306:81–84. [PubMed]
  227. 227.Rao VLR, Dogan A, Todd KG, Bowen KK, Dempsey RJ. Neuroprotection by memantine, a non-competitive NMDA receptor antagonist after traumatic brain injury in rats. Brain Res. 2001;911:96–100.
  228. 228.Rassoulpour A, Wu HQ, Ferre S, Schwarcz R. Nanomolar concentrations of kynurenic acid reduce extracellular dopamine levels in the striatum. J. Neurochem. 2005;93:762–5.
  229. 229.Redwine KE, Trujillo KA. Effects of NMDA receptor antagonists on acute mu-opioid analgesia in the rat. Pharmacol. Biochem. Behav. 2003;76:361–72.
  230. 230.Reisberg B, Doody R, Stoffler A, Schmitt F, Ferris S, Mobius HJ. Memantine in moderate-to-severe Alzheimer's disease. N. Engl. J. Med. 2003;348:1333–41.
  231. 231.Ribeiro Do Couto B, Aguilar MA, Manzanedo C, Rodriguez-Arias M, Minarro J. Effects of NMDA receptor antagonists (MK-801 and memantine) on the acquisition of morphine-induced conditioned place preference in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2004;28:1035–43.
  232. 232.Ribeiro Do Couto B, Aguilar MA, Manzanedo C, Rodriguez-Arias M, Minarro J. NMDA glutamate but not dopamine antagonists blocks drug-induced reinstatement of morphine place preference. Brain Res. Bull. 2005;64:493–503. [PubMed]
  233. 233.Riepe MW, Esclaire F, Kasischke K, Schreiber S, Nakase H, Kempski O, Ludolph AC, Dirnagl U, Hugon J. Increased hypoxic tolerance by chemical inhibition of oxidative phosphorylation “chemical preconditioning” J. Cereb. Blood Flow Metab. 1997;17:257–264. [PubMed]
  234. 234.Rimpilainen J, Pokela M, Kiviluoma K, Vainionpaa V, Hirvonen J, Ohtonen P, Jantti V, Anttila V, Heinonen H, Juvonen T. The N-methyl-D-aspartate antagonist memantine has no neuroprotective effect during hypothermic circulatory arrest a study in the chronic porcine model. J. Thorac. Cardiovasc. Surg. 2001;121:957–68. [PubMed]
  235. 235.Rodriguez-Arias M, Maldonado C, Aguilar MA, Minarro J. Memantine does not block antiaggressive effects of morphine in mice. Behav. Pharmacol. 2002;13:249–252. [PubMed]
  236. 236.Rogawski MA. Therapeutic potential of excitatory amino acid antagonists - channel blockers and 2,3-benzodiazepines. Trends Pharmacol. Sci. 1993;14:325–331. [PubMed]
  237. 237.Rogawski MA, Wenk GL. The neuropharmacological basis for the use of memantine in the treatment of Alzheimer's disease. CNS Drug Rev. 2003;9:275–308. [PubMed]
  238. 238.Rogawski MA, Yamaguchi SI, Jones SM, Rice KC, Thurkauf A, Monn JA. Anticonvulsant activity of the low-affinity uncompetitive N-Methyl-D-Aspartate antagonist (+/-)-5-Aminocarbonyl-10,11-dihydro-5H-dibenzo<a,d>cyclohepten-5, 10-imine (ADCI) - Comparison with the structural analogs dizocilpine (mK-801) and carbamazepine. J. Pharmacol. Exp. Ther. 1991;259:30–37. [PubMed]
  239. 239.Rogoz Z, Skuza G, Maj J, Danysz W. Synergistic effect of uncompetitive NMDA receptor antagonists and antidepressant drugs in the forced swimming test in rats. Neuropharmacology. 2002;42:1024–1030. [PubMed]
  240. 240.Ros Bernal F, Nombela C, Gomez A, Gomez M, Antunez C, Herrero M. Soc. Neurosci. Abst. 2005;31
  241. 241.Rosi S, Vazdarjanova A, Ramirez-Amaya V, Worley PF, Barnes CA, Wenk GL. Memantine protects against LPS-induced neuroinflammation, restores behaviorally-induced gene expression and spatial learning in the rat. Neuroscience. 2006;142:1303–15. [PubMed]
  242. 242.Rukoiatkina NI, Gorbunova LV, Gmiro VE, Lukomskaia NI. [Ability of novel non-competitive glutamate receptor blocking agents to weaken motor disorders in animals] Sposobnost' novykh nekonkurentnykh blokatorov glutamatnykh retseptorov oslabliat' dvigatel'nye narusheniia u zhivotnykh. Rossiiskii Fiziologicheskii Zhurnal Imeni I.M.Sechenova. 2001;87:1260–1267. [PubMed]
  243. 243.Rukoyatkina NI, Gorbunova LV, Gmiro VE, Lukomskaya NY. The ability of new non-competitive glutamate receptor blockers to weaken motor disorders in animals. Neurosci. Behav. Physiol. 2003;33:273–8. [PubMed]
  244. 244.Ruppersberg JP, Mosbacher J, Gunther W, Schoepfer R, Fakler B. Studying block in cloned N-methyl-D-aspartate (NMDA) receptors. Biochem. Pharmacol. 1993;46:1877–1885. [PubMed]
  245. 245.Rusted JM, Newhouse PA, Levin ED. Nicotinic treatment for degenerative neuropsychiatric disorders such as Alzheimer's disease and Parkinson's disease. Behav. Brain Res. 2000;113:121–129. [PubMed]
  246. 246.Sanberg PR, Shytle RD, Silver AA. Treatment of Tourette's syndrome with mecamylamine. Lancet. 1998;352:705–6. [PubMed]
  247. 247.Sanger DJ, Terry P, Katz JL. Memantine has phencyclidine-like but not cocaine-like discriminative stimulus effects in rats. Behav. Pharmacol. 1992;3:265–268. [PubMed]
  248. 248.Sawynok J, Reid A. Modulation of formalin-induced behaviors and edema by local and systemic administration of dextromethorphan, memantine and ketamine. Eur. J. Pharmacol. 2002;450:153–62. [PubMed]
  249. 249.Saybasili H, Yuksel M, Haklar G, Yalcin AS. Depolarization-induced superoxide radical formation in rat hippocampal slices. Neurochem. Res. 2002;27:473–6. [PubMed]
  250. 250.Scatton B. Excitatory amino acid receptor antagonists a novel treatment for ischemic cerebrovascular diseases. Life Sci. 1994;55:2115–2124. [PubMed]
  251. 251.Schmitt JD. Exploring the nature of molecular recognition in nicotinic acetylcholine receptors. Curr. Med. Chem. 2000;7:749–800. [PubMed]
  252. 252.Schuettauf F, Quinto K, Naskar R, Zurakowski D. Effects of anti-glaucoma medications on ganglion cell survival: the DBA/2J mouse model. Vision Res. 2002;42:2333–7. [PubMed]
  253. 253.Schulz JB, Matthews RT, Henshaw DR, Beal MF. Neuroprotective strategies for treatment of lesions produced by mitochondrial toxins: implications for neurodegenerative diseases. Neuroscience (Oxford) 1996;71:1043–8. [PubMed]
  254. 254.Semenova S, Danysz W, Bespalov A. Low-affinity NMDA receptor channel blockers inhibit acquisition of intravenous morphine self-administration in naive mice. Eur. J. Pharmacol. 1999;378:1–8. [PubMed]
  255. 255.Sengupta JN, Petersen J, Peles S, Shaker R. Response properties of antral mechanosensitive afferent fibers and effects of ionotropic glutamate receptor antagonists. Neuroscience. 2004;125:711–23. [PubMed]
  256. 256.Sevostianova N, Danysz W. Analgesic effects of mGlu1 and mGlu5 receptor antagonists in the rat formalin test. Neuropharmacology. 2006;51:623–630. [PubMed]
  257. 257.Sevostianova N, Danysz W, Bespalov AY. Analgesic effects of morphine and loperamide in the rat formalin test Interactions with NMDA receptor antagonists. Eur. J. Pharmacol. 2005;525:83–90. [PubMed]
  258. 258.Shearman E, Rossi S, Szasz B, Juranyi Z, Fallon S, Pomara N, Sershen H, Lajtha A. Changes in cerebral neurotransmitters and metabolites induced by acute donepezil and memantine administrations a microdialysis study. Brain Res. Bull. 2006;69:204–213. [PubMed]
  259. 259.Shekunova EV, Bespalov AY. Effects of memantine on estrogen-dependent acute tolerance to the morphine analgesia in female rats. Eur. J. Pharmacol. 2006;535:78–85. [PubMed]
  260. 260.Shore LE, Dayer AG, Ambrose JB, Cameron HA. Soc. Neurosci. Abst. 2004;30
  261. 261.Si A, Helliwell P, Maleszka R. Effects of NMDA receptor antagonists on olfactory learning and memory in the honeybee (Apis mellifera) Pharmacol. Biochem. Behav. 2004;77:191–7.
  262. 262.Sinis N, Birbauer N, Gustin S, et al, “Memantine treatment of complex regional pain syndrome: a preliminary report of six cases,” Clin J Pain; 2007;23(3):237-243
  263. 263.Skuza G, Rogoz Z. The synergistic effect of selective sigma receptor agonists and uncompetitive NMDA receptor antagonists in the forced swim test in rats. J. Physiol. Pharmacol. 2006;57:217–29. [PubMed]
  264. 264.Skuza G, Rogoz Z. Sigma1 receptor antagonists attenuate antidepressant-like effect induced by co-administration of 1,3 di-0-tolylguanidine (DTG) and memantine in the forced swimming test in rats. Pol. J. Pharmacol. 2003;55:1149–1152. [PubMed]
  265. 265.Snider B, Tee LY, Lee C. Soc. Neurosci. Abst. 2003;29
  266. 266.Snider B, Wilson T, Warmke T, Wu S. Soc. Neurosci. Abst. 2005;31
  267. 267.Sobolevsky A, Koshelev S. Two blocking sites of amino-adamantane derivatives in open N-methyl-D- aspartate channels. Biophys. J. 1998;74:1305–1319. [PMC free article] [PubMed]
  268. 268.Sobolevsky AI, Koshelev SG, Khodorov BI. Interaction of memantine and amantadine with agonist-unbound NMDA-receptor channels in acutely isolated rat hippocampal neurons. J. Physiol. (Lond) 1998;512 (Pt 1):47–60. [PMC free article] [PubMed]
  269. 269.Sobrado M, Roda JM, Lopez MG, Egea J, Garcia AG. Galantamine and memantine produce different degrees of neuroprotection in rat hippocampal slices subjected to oxygen-glucose deprivation. Neurosci. Lett. 2004;365:132–6. [PubMed]
  270. 270.Stieg PE, Sathi S, Alvarado SP, Jackson PS, Pellegrini JW, Chen HSV, Lipton SA, Jensen FE. Soc. Neurosci. Abst. 1993;19
  271. 271.Stieg PE, Sathi S, Warach S, Le DA, Lipton SA. Neuroprotection by the NMDA receptor-associated open-channel blocker memantine in a photothrombotic model of cerebral focal ischemia in neonatal rat. Eur. J. Pharmacol. 1999;375:115–20.
  272. 272.Sukhotina IA, Bespalov AY. Effects of the NMDA receptor channel blockers memantine and MRZ 2/579 on morphine withdrawal-facilitated aggression in mice. Psychopharmacology (Berl) 2000;149:345–350.
  273. 273.Sukhotina IA, Zvrtau E, Danysz W, Bespalov AY. Caffeine withdrawal syndrome in social interaction test in mice: Effects of NMDA receptor channel blockers, memantine and neramexane. Behav. Pharmacol. 2004;15:207–214.
  274. 274.Suzuki R, Dickenson AH. Differential pharmacological modulation of the spontaneous stimulus-independent activity in the rat spinal cord following peripheral nerve injury. Exp. Neurol. 2006;198:72–80.
  275. 275.Suzuki R, Matthews EA, Dickenson AH. Comparison of the effects of MK-801, ketamine and memantine on responses of spinal dorsal horn neurones in a rat model of mononeuropathy. Pain. 2001;91:101–109.
  276. 276.Swerdlow NR, Falah-Tafti M, Goins JC, Crain SK, Auerbach PP, Shoemaker JM. Soc. Neurosci. Abst. 2003;29
  277. 277.Takano T, Lin JH, Arcuino G, Gao Q, Yang J, Nedergaard M. Glutamate release promotes growth of malignant gliomas. Nat. Med. 2001;7:1010–1015.
  278. 278.Talalaenko AN, Gordienko DV, Pankrat'ev DV, Zinkovich II, Krivobok GK. The role of neurochemical mechanisms of ventromedial hypothalamus in various models of anxiety in rats. Bull. Exp. Biol. Med. 2001;131:38–40.
  279. 279.Tariot PN, Farlow MR, Grossberg GT, Graham SM, McDonald S, Gergel I. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil a randomized controlled trial. JAMA. 2004;291:317–24.
  280. 280.Tremblay R, Chakravarthy B, Hewitt K, Tauskela J, Morley P, Atkinson T, Durkin JP. Transient NMDA receptor inactivation provides long-term protection to cultured cortical neurons from a variety of death signals. J. Neurosci. 2000;20:7183–7192.
  281. 281.Tzschentke TM, Schmidt WJ. Memantine does not substantially affect brain stimulation reward: comparison with MK-801. Brain Res. 1999;845:192–8.
  282. 282.Tzschentke TM, Schmidt WJ. Effects of the non-competitive NMDA-receptor antagonist memantine on morphine- and cocaine-induced potentiation of lateral hypothalamic brain stimulation reward. Psychopharmacology (Berl) 2000;149:225–234.
  283. 283.Unger C, Svedberg MM, Yu WF, Hedberg MM, Nordberg A. Effect of subchronic treatment of memantine, galantamine and nicotine in the brain of APPswe transgenic mice. J. Pharmacol. Exp. Ther. 2006;317:30–36.
  284. 284.Valencia-Alfonso CE, Lerma-Diaz JM, Sandoval Salazar C, Villase or-Cabrera T, Luquin SF-VA, Garcia-Estrada J. Soc. Neurosci. Abst. 2004;30
  285. 285.Van Dam D, Abramowski D, Staufenbiel M, De Deyn PP. Symptomatic effect of donepezil, rivastigmine, galantamine and memantine on cognitive deficits in the APP23 model. Psychopharmacology (Berl) 2005;180:177–90.
  286. 286.Van Dam D, De Deyn PP. Cognitive evaluation of disease-modifying efficacy of Galantamine and Memantine in the APP23 model. Eur. Neuropsychopharmacol. 2006;16:59–69.
  287. 287.Villetti G, Bergamaschi M, Bassani F, Bolzoni PT, Maiorino M, Pietra C, Rondelli I, Chamiot-Clerc P, Simonato M, Barbieri M. Antinociceptive activity of the N-methyl-D-aspartate receptor antagonist N-(2-Indanyl)-glycinamide hydrochloride (CHF3381) in experimental models of inflammatory and neuropathic pain. J. Pharmacol. Exp. Ther. 2003;306:804–814.
  288. 288.Volbracht C, van Beek J, Zhu C, Blomgren K, Leist M. Neuroprotective properties of memantine in different in vitro and in vivo models of excitotoxicity. Eur. J. Neurosci. 2006;23:2611–2622.
  289. 289.Vorwerk CK, Zurakowski D, McDermott LM, Mawrin C, Dreyer EB. Effects of axonal injury on ganglion cell survival and glutamate homeostasis. Brain Res. Bull. 2004;62:485–90.
  290. 290.Vosburg SK, Hart CL, Haney M, Foltin RW. An evaluation of the reinforcing effects of memantine in cocaine-dependent humans. Drug Alcohol Depend. 2005;79:257–60. [PubMed]
  291. 291.Wang R, Zhang D. Memantine prolongs survival in an amyotrophic lateral sclerosis mouse model. Eur. J. Neurosci. 2005;22:2376–80. [PubMed]
  292. 292.Wang XM, Bausch SB. Effects of distinct classes of N-methyl-D-aspartate receptor antagonists on seizures, axonal sprouting and neuronal loss in vitro: suppression by NR2B-selective antagonists. Neuropharmacology. 2004;47:1008–20. [PubMed]
  293. 293.Wang YF, Stieg P, Jensen J, Lipton SA. Memantine, a clinically tolerated nmda antagonist, decreases infarct size in spontaneously hypertensive rats when administered two hours post ischemic-reperfusion cerebral injury. Neurology. 1995;45:526P.
  294. 294.Wei J, Dong M, Xiao C, Jiang F, Castellino FJ, Prorok M, Dai Q. Conantokins and variants derived from cone snail venom inhibit naloxone-induced withdrawal jumping in morphine-dependent mice. Neurosci. Lett. 2006;405:137–41. [PubMed]
  295. 295.Weiland S, Bertrand D, Leonard S. Neuronal nicotinic acetylcholine receptors: from the gene to the disease. Behav. Brain Res. 2000;113:43–56. [PubMed]
  296. 296.Wenk GL, Danysz W, Mobley SL. MK-801, memantine and amantadine show neuroprotective activity in the nucleus basalis magnocellularis. Eur. J. Pharmacol. Env. Tox. Pharmacol. 1995;293:267–270. [PubMed]
  297. 297.Wenk GL, McGann-Gramling K, Hauss-Wegrzyniak B. The presence of the app(swe) mutation in mice does not increase the vulnerability of cholinergic basal forebrain neurons to neuroinflammation. Neuroscience. 2004;125:769–76. [PubMed]
  298. 298.Wenk GL, Parsons CG, Danysz W. Potential role of NMDA receptors as executors of neurodegeneration resulting from diverse insults focus on memantine. Behav. Pharmacol. 2006;17:411–424.
  299. 299.Wenk GL, Quack G, Moebius HJ, Danysz W. No interaction of memantine with acetylcholinesterase inhibitors approved for clinical use. Life Sci. 2000;66:1079–1083.
  300. 300.Wenk GL, Willard LB. The neural mechanisms underlying cholinergic cell death within the basal forebrain. Int. J. Dev. Neurosci. 1998;16:729–735.
  301. 301.Westenberg HG. Pharmacology of antidepressants: selectivity or multiplicity? J. Clin. Psychiatry discussion 46-8. 1999;60 ( 17) Suppl.:4–8.
  302. 302.Wilde MI, Markham A. Ondansetron.A review of its pharmacology and preliminary clinical findings in novel applications. Drugs. 1996;52:773–94
  303. 303.Wiley JL, Harvey SA, Balster RL, Nicholson KL. Affinity and specificity of N-methyl- D-aspartate channel blockers affect their ability to disrupt prepulse inhibition of acoustic startle in rats. Psychopharmacology (Berl) 2003;165:378–85.
  304. 304.Willard LB, Hauss-Wegrzyniak B, Danysz W, Wenk GL. The cytotoxicity of chronic neuroinflammation upon basal forebrain cholinergic neurons of rats can be attenuated by glutamatergic antagonism or cyclooxygenase-2 inhibition. Exp. Brain Res. 2000;134:58–65.
  305. 305.Winblad B, Poritis N. Memantine in severe dementia: results of the M-BEST study (benefit and efficacy in severly demented patients during treatment with memantine) Int. J. Geriatr. Psychiatry. 1999;14:135–146.
  306. 306.WoldeMussie E, Yoles E, Schwartz M, Ruiz G, Wheeler LA. Neuroprotective effect of memantine in different retinal injury models in rats. J. Glaucoma. 2002;11:474–80.
  307. 307.Wollmuth LP, Kuner T, Sakmann B. Adjacent asparagines in the NR2-subunit of the NMDA receptor channel control the voltage-dependent block by extracellular Mg2+ J. Physiol. 1998;506:13–32.
  308. 308.Wollmuth LP, Kuner T, Seeburg PH, Sakmann B. Differential contribution of the NR1- and NR2A-subunits to the selectivity filter of recombinant NMDA receptor channels. J. Physiol. (Lond) 1996;491:779–797.
  309. 309.Yamada K, Takayanagi M, Kamei H, Nagai T, Dohniwa M, Kobayashi K, Yoshida S, Ohhara T, Takauma K, Nabeshima T. Effects of memantine and donepezil on amyloid beta-induced memory impairment in a delayed-matching to position task in rats. Behav. Brain Res. 2005;162:191–9. [PubMed]
  310. 310.Zagorodnyuk VP, Chen BN, Costa M, Brookes SJ. Mechanotransduction by intraganglionic laminar endings of vagal tension receptors in the guinea pig oesophagus. J. Physiol. 2003;553:575–87.
  311. 311.Zagorodnyuk VP, Lynn P, Costa M, Brookes SJH. Mechanisms of mechanotransduction by specialized low-threshold mechanoreceptors in the guinea pig rectum. Am. J. Physiol. 2005;289:G397–G406.
  312. 312.Zajaczkowski W, Frankiewicz T, Parsons CG, Danysz W. Uncompetitive NMDA receptor antagonists attenuate NMDA-induced impairment of passive avoidance learning and LTP. Neuropharmacology. 1997;36:961–971.
  313. 313.Zakharova E, Danysz W, Bespalov A. Drug discrimination analysis of NMDA receptor channel blockers as nicotinic receptor antagonists in rats. Psychopharmacology. 2005;179:128–135.
  314. 314.Zakharova E, Malyshkin A, Kashkin V, Neznanova O, Sukhotina I, Danysz W, Bespalov A. The NMDA receptor channel blocker memantine and opioid receptor antagonist naltrexone inhibit the saccharin deprivation effect in rats. Behav. Pharmacol. 2004;15:273–278.
  315. 315.Zarate CA Jr, Singh JB, Quiroz JA, De Jesus G, Denicoff KK, Luckenbaugh DA, Manji HK, Charney DS. A double-blind, placebo-controlled study of memantine in the treatment of major depression. Am. J. Psychiatry. 2006;163:153–5.
  316. 316.Zhang GH, Min SS, Lee KS, Back SK, Yoon SJ, Yoon YW, Kim YI, Na HS, Hong SK, Han HC. Intraarticular pretreatment with ketamine and memantine could prevent arthritic pain relevance to the decrease of spinal c-fos expression in rats. Anesth. Analg. 2004;99:152–8.
  317. 317.Zhao X, Marszalec W, Yeh JZ, Narahashi T. Soc. Neurosci. Abst. 2005;31
  318. 318.Zoladz PR, Campbell AM, Park CR, Schaefer D, Danysz W, Diamond DM. Enhancement of long-term spatial memory in adult rats by the noncompetitive NMDA receptor antagonists, memantine and neramexane. Pharmacol. Biochem. Behav. 2006;85:298–306.